

Genomic analysis of circulating tumor DNA from patients with hormone receptor-positive, HER2-mutant metastatic breast cancer enrolled in SUMMIT: Mechanisms of acquired resistance to neratinib + fulvestrant + trastuzumab

Cynthia Ma,¹ James Waisman,² Adam Brufsky,³ Eddy Yang,⁴ Hans Wildiers,⁵ John Crown,⁶ Sarina Piha-Paul,⁷ Jennifer Suga,⁸ Jose Garcia-Saenz,⁹ Valentina Gambardella,¹⁰ Angel Guerrero,¹¹ Salomon M Stemmer,¹² Ron Bose,¹ Tonya Novara-Demgen,¹³ Daniel DiPrimeo,¹³ Lisa D. Eli,¹³ Komal Jhaveri¹⁴ ¹Washington University School of Medicine, St. Louis, MO, USA; ²City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ⁴University Hospital of UPMC, Pittsburgh, PA, USA; ⁴University Hospital Schure, St. Vincent's Private Hospital, Dublin, Ireland; ⁷The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴University Hospital Schure, St. Vincent's Private Hospital, Dublin, Ireland; ⁷The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴University Hospital Schure, St. Vincent's Private Hospital, Dublin, Ireland; ⁷The University of Texas MD Anderson Cancer Center, Houston, TX, USA; *Kaiser Permanente Vallejo Medical Center, Vallejo, CA, USA; *Hospital Clínico San Carlos, Madrid, Spain; ¹²Institute of Hospital Clínico de Valencia, Spain; ¹²Institute of Oncology, Davidoff Center, Rabin Medical Center, Petah Tiqwa, and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Introduction

- HER2 mutations are oncogenic drivers in a subset of metastatic breast cancers (MBCs) and may be acquired as a mechanism of resistance to endocrine therapy.12
- Neratinib (N) is an oral, irreversible, pan-HER tyrosine kinase inhibitor with demonstrated preclinical and clinical activity against HER2-mutant cancers.1-8
- In the hypothesis-generating SUMMIT basket trial (NCT01953926), original cohorts of patients with locally assessed hormone receptor-positive (HR+), HER2-negative (HER-), HER2-mutant MBC received N alone or in combination with fulvestrant (N+F; Figure 1). Clinical responses were promising but of short duration. Clinical progression coincided with emergence of additional HER2 mutations and/or amplification of the mutant allele.⁶
- Addition of trastuzumab (T) to the doublet was postulated to prolong response. The combination of N+F+T in heavily pretreated patients with HR+, HER2-mutant MBC who had received cyclin-dependent kinase 4/6 inhibitors (CDK4/6is; n=51) yielded a confirmed overall response rate (ORR) of 35.3%, median duration of response (DOR) of 14.3 months, clinical benefit rate (CBR) of 47.1%, and median progression-free survival (PFS) of 8.2 months.8
- Seven of these 51 patients were part of a cohort that was randomized (1:1:1) to N+F+T, F+T, or F alone. Patients randomized to F+T or F could crossover to N+F+T upon progression. No patients responded to F or F+T; however, one of four patients who crossed over to N+F+T after progressing on F+T responded to the triplet, as did two of six who crossed over after progressing on F.8
- We undertook longitudinal circulating tumor DNA (ctDNA) sequencing in patients who responded to N+F+T upfront and after crossover

Figure 1. SUMMIT study design: HR+, HER2-, HER2-mutant MBC cohorts

Objectives

- To report baseline HER2 alterations, as assessed by central next-generation sequencing (NGS) of ctDNA and compare with reported enrollment mutations.
- To longitudinally evaluate HER2 mutation variant allele frequencies (VAFs) in patients with clinical responses to N+F+T at three timepoints: before treatment, on treatment, and either at end of treatment, progression, or at last blood drav
- To assess longitudinal genomic profiles of patients randomized to F or F+T who then crossed over to N+F+T.
- To determine whether potential mechanisms of acquired resistance to N+F+T (dual HER2 therapy) are consistent with or different from those previously reported for N+F

Methods

- NGS was conducted using the Tempus xF+ assay (Tempus Labs, Chicago, IL)
- Tempus xF+ is a targeted liquid biopsy panel that detects cell-free DNA (cfDNA) in blood specimens obtained from patients with advanced solid tumors and detects:
- Single-nucleotide variants and insertions and/or deletions in 523 genes.
- Gene rearrangements in 10 genes
- Copy number variants (CNVs), including gains in seven genes and losses in two genes.

Analysis cohort

- Patients were enrolled on SUMMIT on the basis of an activating HER2 mutation as reported by any commercial or Clinical Laboratory Improvement Amendments/College of American Pathologists (or regionally equivalently) certified laboratory, sequenced from either tissue (formalin-fixed paraffin embedded; FFPE) or liquid biopsy.
- A total of 68 patients had HR+, HER2-, HER2-mutant MBC and prior CDK4/6i therapy; ctDNA was centrally assessed for 24 patients (Figure 2).
- ctDNA from pre-treatment liquid biopsies was sequenced by Tempus xF+ (Table 2). The genomic spectrum was consistent with prior SUMMIT cohorts and with publicly available datasets (Figure 3).

Results

Patients with HR+, HER2-, HER2-mutant MBC treated with N+F+T had increased response and prolonged PFS (Table 1).

Small randomized cohorts supported the contribution of N to the triplet.

³Puma Biotechnology, Inc., San Francisco, CA, USA; ¹⁴Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Table 1. Efficacy summary overall and according to treatment received⁸

Parameter	Non-randomized + Randomized HR+ Prior CDK4/6i (N+F+T, n=51)	Randomized HR+ Prior CDK4/6i (F+T, n=7)	After crossover from F+T to N+F+T (n=4)	Randomized HR+ Prior CDK4/6i (F, n=7)	After crossover from F to N+F+T (n=6)
Objective response (confirmed CR or PR) ^a , n (%) CR PR	18 (35.3) 1 (2.0) 17 (33.3)	0 0 0	1 (25.0) 0 1 (25.0)	0 0 0	2 (33.3) 0 2 (33.3)
Best overall response ^b (confirmed or unconfirmed PR or CR), n (%)	25 (49.0)	0	1 (25.0)	0	2 (33.3)
Median DOR ^c , months (95% CI)	14.3 (6.4–NE)	No response	6.2 (NE-NE)	No response	6.3 (6.2–6.4)
Clinical benefit ^d , n (%)	24 (47.1)	0	1 (25.0)	0	5 (83.3)
Median PFS ^c , months (95% CI)	8.2 (4.7-12.7)	3.9 (1.9-4.1)	8.25 (NE-NE)	4.1 (1.6-4.1)	NE

rval; CR, confirmed response; NE, not estimable; PR, partial response; SD, stable disease

ier analysis. For crossover patients, calculated from time of crossover to N+F+T. hefit defined as confirmed CR or PR or SD for ≥24 weeks (within ± 7-day visit window)

Figure 2. ctDNA samples for central NGS

Table 2. Concordance between enrollment assay and central pretreatment ctDNA NGS

Central NGS	Enrollment assay sample type		
Pretreatment ctDNA (centrally assessed), n (%)	FFPE tissue (n=14)	ctDNA (n=10)	
HER2 mutation detected	13 (92.8)	8 (80.0)°	
HER2 mutation not detected	1 (7.1)	2 (20.0)	

Figure 3. Genomic spectrum of centrally assessed ctDNA at baseline (n=24)

88%	
38%	Inframe mutation (putative driver)
33%	Missense mutation (putative driver)
29%	Missense mutation (unknown significance)
17%	Splice mutation (unknown significance)
17%	Truncating mutation (putative driver)
13%	Amplification
13%	No alterations
8%	
	88%

Figure 4. HER2 mutations: VAF in patients^a treated with N+F+T. Blood draw and ctDNA sequencing A) at pretreatment, on-treatment, and at time of progression in patients who progressed after treatment and B) at pretreatment, on-treatment, and at last blood draw in patients who remained on treatment

HER2 mutations in patients treated with N+F+T

- HER2 VAFs decreased upon treatment with N+F+T in patients with clinical response, and re-emerged upon progression, along with additional HER2 mutations, including gatekeepers, sensitive mutations, and variants of unknown significance (Figure 4A).
- HER2 VAFs decreased upon treatment initiation in patients with clinical response to N+F+T, and remained undetectable while patients remained on treatment (Figure 4B).
- Individual patient mutation profiles are shown in Figure 5 and detail emergence of mutations upon disease progression.

Figure 5. Emergent mutations at progression on N+F+T

Copyright 2022 Puma Biotechnology

#PD17-01

Crossover case study 1: F to N+F+T

Crossover case study 2: F+T to N+F+T

Conclusions

- HER2 mutation VAFs in ctDNA from patients with HR+, HER2-mutant MBC decrease upon treatment with N+F+T and increase upon progression, consistent with tumor response over time
- Enrollment HER2 mutations detected by local clinical assays on either archival primary or metastatic tissue, or liquid biopsy, were 88% overall concordant with centrally assessed ctDNA analysis of pretreatment blood samples
- The spectrum of genomic alterations was consistent with prior SUMMIT breast cancer cohorts and publicly available datasets. In 12 of the 14 patients who had clinical response to N+F+T and longitudinal ctDNA sequencing, the HER2 mutation was undetectable in the on-treatment sample; only those two with L755S remained detectable on treatment. This observation is consistent with the reported lesser sensitivity of L755S relative to other HER2 mutations.1,7,9
- Mutations that emerged upon progression on N+F+T in patients with initial clinical response included additional HER2 alterations (gatekeeper mutations, sensitive mutations, and variants of unknown significance) and mutations in PIK3CA, PTEN, and TP53.
- Dual HER2 targeting plus HR targeting (N+F+T), despite deepening and prolonging clinical response compared with N+F alone, did not preclude eventual emergence of additional HER2 genomic events.
- Highlighted case studies of patients initially randomized to F or F+T who then crossed over to receive the triplet. with corresponding ctDNA analysis and imaging results, support the role of N in the efficacy of the triplet regimen.

References

- Bose et al. Cancer Discov 2013:3:224-37
- Razavi et al. Cancer Cell 2018;34:427–38
- . Nayar et al. Nat Genet 2019;51:207-16. , ann et al. Clin Cancer Res 2019:25:277–89
- 5. Hyman et al. Nature 2018;554:189-94.
- 6. Smyth et al. Cancer Discov 2020:10:198-213
- Ma et al. Clin Cancer Res 2017;23:5687-95 8. Jhaveri et al. J Clin Oncol 2022;40(16 suppl.)1028.
- 9. Li et al. Cell Cycle 2019;18:1513-22.

Acknowledgments and disclosures

- The authors would like to thank all patients and their families for participating in the SUMMIT study
- SUMMIT was sponsored by Puma Biotechnology, Inc.
- Puma Biotechnology, Inc. funded the editorial/creative assistance for this poster, which was provided by Miller Medical Communications Ltd The presenting author, Cynthia Ma, has the following financial relationships to disclose
- Research grant (institution): Puma Biotechnology, Inc. Grant funding: DOD BC170330P1.