

Neratinib efficacy in patients with EGFR exon 18-mutant non-small-cell lung cancer: findings from the SUMMIT basket trial

Jonathan W. Goldman,¹ Alejandro Martinez Bueno,² Christophe Dooms,³ Komal Jhaveri,⁴ Maria de Miguel,⁵ Sarina A. Piha-Paul,⁶ Nisha Unni,⁷ Amit Mahipal,⁸ J. Marie Suga,⁹ Charles Naltet,¹⁰ Aviad Zick,¹¹ Monica Antoñanzas,¹² John Crown,¹³ Young Kwan Chae,¹⁴ Daniel DiPrimeo,¹⁵ Lisa D. Eli,¹⁵ Leanne McCulloch,¹⁵ Devalingam Mahalingam¹⁶

¹University of California Los Angeles, Santa Monica, CA, USA; ²Hospital Quirón Dexeus, Oncology, Barcelona, Spain; ²University Hospitals Leuven, Belgium; ⁴Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁵START-CIOCC HM Sanchinarro, Medical Oncology, Madrid, Spain; ⁶The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹The University of Texas Southwestern Medical Center, Dallas, TX, USA; ¹Mayo Clinic, Rochester, MN, USA; ¹Koiser Permanente, Oncology, Vallejo, CA, USA; ¹The University of Jerusalem, Oncology, Jerusalem, Israel; ¹²Hospital Clinico San Carlos, Oncology, Madrid, Spain; ¹³St. Vincent's University Hospital, Oncology, Dublin, Ireland; ¹⁴Hospital Clinices Sant Medical Center Hebrew University Feinberg School of Medicine Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Medicine, Chicago, IL, USA; ¹⁸Puma Biotechnology Inc., Los Angeles, CA, USA; ¹⁹Puma Enter Comprehensive Cancer Center of Northwestern University, Medicine, Chicago, USA

Background

EGFR exon 18 mutations represent 5% of all EGFR mutations detected in lung cancer.³

- In vitro data have shown that EGFR exon 18 mutations are highly sensitive to neratinib. an oral, irreversible, tyrosine kinase inhibitor (TKI) of EGFR (ERBB1), HER2 (ERBB2). & HER4 (ERBB4).2-4
- Clinical trial data also show that EGFR exon 18 mutations are highly sensitive to neratinih^{,5,6}
- The phase 2 SUMMIT basket trial (NCT01953926) demonstrated efficacy of neratinib in a subset of patients with EGFR exon 18-mutant non-small cell lung cancer (NSCLC).⁶
- Neratinib also has documented activity in HER2-positive metastatic breast cancer. including patients with central nervous system (CNS) metastases.^{7,8}

Objectives

In this poster we report updated data on the efficacy and safety of neratinib in an expanded cohort of patients with EGFR exon 18-mutant NSCLC in SUMMIT according to prior EGFR TKI treatment.

Methods

The overall SUMMIT study design has been presented previously.^{6,9}

The design of the EGFR exon 18-mutant lung cancer cohort is shown in detail in Figure 1.

Figure 1. SUMMIT EGFR exon 18-mutant lung cancer cohort

Results

Table 1. Baseline demographics and patient characteristics

Patient characteristics	Efficacy evaluable patients (n=29)
Median age (range), years <65 years, n (%) ≥65 years, n (%)	65 (42–87) 10 (34.5) 19 (65.5)
Gender, n (%) Female Male	17 (58.6) 12 (41.4)
ECOG performance status, n (%) 0 1 2	14 (48.3) 11 (37.9) 4 (13.8)
Race, n (%) White Black or African American Other	21 (72.4) 4 (13.8) 4 (13.8)
Prior EGFR tyrosine kinase inhibitor, n (%) Prior chemotherapy, n (%) Prior checkpoint inhibitor, n (%) Number of prior lines in metastatic/locally advanced setting, range	23 (79) 15 (52) 5 (17) 1-6

Data cutoff date: Sep 2022.

Key efficacy findings

- The confirmed objective response rate (ORR) was 34.5% overall, 30.4% in patients pretreated with TKIs, and 50.0% in patients not pretreated with TKIs (Table 2).
- Response or stable disease lasting for ≥48 weeks was observed in 7 patients (6 PR, 1 SD).
- Two of 7 patients with baseline CNS metastasis had a partial response (PR; median PFS 3.6 months: 95% CI 1.9-9.1 months)
- At data cutoff, treatment was ongoing in 6 patients.

Table 2. EGFR exon 18-mutant lung cancer cohort receiving neratinib monotherapy: Efficacy summary

Parameter	All efficacy- evaluable patients (n=29)	TKI pretreated patients (n=23)	Patients with no prior TKI (n=6)	Patients with CNS metastases at baseline (n=7)
Objective response (confirmed), ^a n	10 (34.5)	7 (30.4)	3 (50.0)	2 (28.6)
CR	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
PR	10 (34.5)	7 (30.4)	3 (50.0)	2 (28.6)
Objective response rate, % (95% Cl)	34.5 (17.9–54.3)	30.4 (13.2–52.9)	50.0 (11.8–88.2)	28.6 (3.7–71.0)
Best overall response, n	11	8	3	2
CR	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
PR	11 (37.9)	8 (34.8)	3 (50.0)	2 (28.6)
Best overall response rate, % (95% CI)	37.9 (20.7–57.7)	34.8 (16.4–57.3)	50.0 (11.8–88.2)	28.6 (3.7–71.0)
Median DOR, ^b months (95% CI)	NE (NE-NE)	NE (NE–NE)	NE (NE-NE)	6.8 (6.2–7.5)
	Range: 4.0-26.1*	Range: 4.0–26.1*	6.2, 9.4*, 13.8*	6.2, 7.5
Clinical benefit, ^c n	15	11	4	3
CR or PR	10 (34.5)	7 (30.4)	3 (50.0)	2 (28.6)
SD ≥16 weeks	5 (17.2)	4 (17.4)	1 (16.7)	1 (14.3)
Clinical benefit rate, % (95% CI)	51.7 (32.5–70.6)	47.8 (26.8–69.4)	66.7 (22.3–95.7)	42.9 (9.9–81.6)
Median PFS, ^b months (95% CI)	5.8 (2.3–11.0)	3.7 (2.3–9.2)	NE (NE-NE)	3.6 (1.9–9.1)

Data cutoff date: Sen 2022, Responses were evaluated as per RECIST v1.1 criteria

³Objective response rate is defined as either a complete or partial response that is confirmed no less than 4 weeks after the criteria for response rate initially met; ³Kaplan-Meier analysis in efficacy population; ⁴Clinical benefit rate is defined as confirmed CR or PR or stable disease SD for ≥16 weeks (within ± 7-day visit window); NE = not estimable; *response ongoing; #censored

Figure 2. Treatment duration and best response

Data cutoff date: Sep 2022.

Figure 3. Best change in tumor response

Data cutoff date: Sep 2022

²3 patients were not evaluable for response and are not represented here.

Table 3. EGFR exon 18-mutant lung cancer cohort: Most common treatment-emergent adverse events >10%

	Safety evaluab	Safety evaluable patients (n=31) ^a		
TEAEs	Any grade	Grade ≥3		
Diarrhea	16 (51.6)	3 (9.7)		
Constipation	12 (38.7)	0		
Nausea	11 (35.5)	0		
Decreased appetite	10 (32.3)	2 (6.5)		
Vomiting	8 (25.8)	1 (3.2)		
Fatigue	7 (22.6)	0		
Cough	6 (19.4)	0		
Anemia	5 (16.1)	3 (9.7)		
Arthralgia	5 (16.1)	0		
Back pain	5 (16.1)	0		
Dyspnea	5 (16.1)	2 (6.5)		
Rash	5 (16.1)	0		
Weight decreased	5 (16.1)	1 (3.2)		
Dizziness	4 (12.9)	0		

Data cutoff date: Sep 2022. ^aPatients who received at least one dose of neratinit

Key safety findings

- Neratinib with mandatory loperamide prophylaxis (first 2 cycles) was well tolerated.
- The most common adverse events were diarrhea (51.6%), constipation (38.7%), nausea (35.5%) and decreased appetite (32.3%).
- No grade 4 diarrhea was reported. Grade 2 and grade 3 diarrhea were each reported in 10% patients; 1 subject discontinued due to diarrhea.
- The were no notable differences in the safety profiles of patients based on prior TKI use.

Conclusions

- Neratinib monotherapy had meaningful activity in patients with EGFR exon 18-mutant NSCLC, most of whom had received prior TKIs:
- 34.5% of patients had a confirmed PR.
- Treatment with neratinib was well tolerated:
- Diarrhea, the most common side effect, was manageable with mandatory loperamide prophylaxis given for the first 2 cycles.
- Rates of diarrhea, including grade 3, were lower than seen in patients with HER2+ breast cancer and compared favorably with rates reported for other TKIs commonly used in lung cancer.
- Discontinuation due to diarrhea was also lower than reported in other neratinib studies
- Given the lack of effective therapies for patients with NSCLC and difficult-to-treat uncommon mutations after failure of EGFR TKIs, treatment with neratinib should be considered
- Enrollment into the SUMMIT trial is now closed, and additional data are forthcoming

Acknowledgements

- The authors would like to thank all patients and their families for participating in the SUMMIT trial.
- SUMMIT was sponsored by Puma Biotechnology Inc.
- Puma Biotechnology Inc. funded medical writing/editing assistance for this poster, which was provided by Miller Medical Communications Ltd.

References

- 1. Passaro A, et al. J Thoracic Oncol 2021;16:764-73.
- 2. Rabindran SK. et al. Cancer Res 2004:64:3958-65
- 3. Bose R. et al. Cancer Discov 2013:3:224-37.
- 4. Kobayashi Y, et al. Clin Cancer Res 2015;21:5305-13.
- 5. Seguist L, et al. J Clin Oncol 2010;28:3076-83.
- 6. Boni V, et al. WCLC 2020 (OA04).
- 7. Saura C, et al. SABCS 2020 (PD13-09)
- 8. Saura C, et al. J Clin Oncol 2020;38:3138-49.
- 9. Hyman DM, et al. Nature 2018;554:189-94